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Abstract

Considering the divergent temperature habitats and morphological traits of four Percidae

species: yellow perch (Perca flavescens), Eurasian perch (Perca fluviatilis), pike perch

(Sander lucioperca), and ruffe (Gymnocephalus cernua), we stepped into the transcriptome

level to discover genes and mechanisms that drive adaptation to different temperature envi-

ronments and evolution in body shape. Based on 93,566 to 181,246 annotated unigenes of

the four species, we identified 1,117 one-to-one orthologous genes and subsequently con-

structed the phylogenetic trees that are consistent with previous studies. Together with the

tree, the ratios of nonsynonymous to synonymous substitutions presented decreased evolu-

tionary rates from the D. rerio branch to the sub-branch clustered by P. flavescens and P.

fluviatilis. The specific 93 fast-evolving genes and 57 positively selected genes in P. flaves-

cens, compared with 22 shared fast-evolving genes among P. fluviatilis, G. cernua, and S.

lucioperca, showed an intrinsic foundation that ensure its adaptation to the warmer Great

Lakes and farther south, especially in functional terms like “Cul4-RING E3 ubiquitin ligase

complex.” Meanwhile, the specific 78 fast-evolving genes and 41 positively selected genes

in S. lucioperca drew a clear picture of how it evolved to a large and elongated body with

camera-type eyes and muscle strength so that it could occupy the highest position in the

food web. Overall, our results uncover genetic basis that support evolutionary adaptation of

temperature and body shape in four Percid species, and could furthermore assist studies on

environmental adaptation in fishes.

Introduction

While reading the book Adaptation and Natural Selection, the preface sentence “Natural selec-

tion is the only acceptable explanation for the genesis and maintenance of adaptation,” will
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certainly resonate with ecologists [1]. Interestingly, “adaptive evolution” and “evolutionary

adaptation” have been documented by researchers’ studies on numerous organisms; either

way, natural selection is still the most critical part. Undoubtedly, both adaptation and evolu-

tion are inseparable from organisms and the environment. Organisms need to adapt to various

environments, and in turn, specific environments drive the evolution of organisms. One of the

fundamental concerns in molecular evolution often focuses on the role of adaptation, for

instance, the relationship between adaptive evolution and neutral evolution [2]. In the process

of evolution, the stresses that a species adapts to an environment often lead to adjustments of

key genes, as well as changes in traits [3–6]—this is the power of selection. Thus, one of the

central interests is to discover potential genes and mechanisms that are subject to such power.

With advances in next-generation sequencing techniques and bioinformatic analyses, the

ratio, numbers, and patterns of nonsynonymous and synonymous substitutions in protein-

coding genes could be computed and applied to detect selection [7–11]. To be noted, RNA-seq

is one of the frequently applied and efficient methods to reveal information like transcriptomes

and expression of genes, even without genome annotation [12–14].

Fish, like most vertebrates, present a diverse range of divergent evolutions and global envi-

ronmental adaptations. As ectotherms, fish are very sensitive to ambient temperature [15, 16],

as well as other abiotic factors; and temperature powerfully influences biological functions like

embryo development, metabolic rate, and growth [17–20]. These functions and genes involved

usually contribute to the formation of traits [21, 22]. Most functions and gene expression are

regulated by environmental factors like temperature, dissolved oxygen, and osmotic pressure.

Thus, influences like this often determine the fitness of fish in diverse environments. For

instance, the body could be well shaped for better swimming and occupying a unique ecologi-

cal niche. Such fitness should be the purposeful evolution of fish during their adaptation, and

may eventually lead to the speciation. For example, in Lake Stechlin, the vertical difference in

water temperature drove temperature-related physiological adaptations that promote ecologi-

cal evolution in the sympatric species pair of Coregonus spp [23]. The divergence in ontoge-

netic rates found in a Nordic freshwater fish, presenting in differentiation of larval

developmental rate and efficiency, was also driven by temperature and proved that the power

of natural selection could promote the evolutionary adaptation of temperate lake fish within

only 22 generations [24]. In Lake Victoria, divergent environmental selections drove diver-

gency in sensory systems and ultimately led to the speciation of two cichlid fishes [25]. The

three-spine stickleback (Gasterosteus aculeatus), a star model for adaptive evolution research

and whose ancestor originated from marine environment, showed typical evolutionary

changes in its global distribution and colonization in freshwater [26–28], especially in kidney

morphology and candidate gene expression [29]. Moreover, in cichlid fishes, sticklebacks,

salmons, and Gnathopogon fishes, genomic architectures contained the basic habitat-related

mechanisms of adaptive evolution for ecologically divergent body shape in sympatric species

[30–33].

Here, we turned attention to four Percidae species: yellow perch (Perca flavescens), Eurasian

perch (Perca fluviatilis), pike perch (Sander lucioperca), and ruffe (Gymnocephalus cernua).

We were interested in the two following points:

First, whether there exist intrinsic molecular differences that explain the divergent adapta-

tion of the two sister species P. flavescens and P. fluviatilis to different temperature environ-

ments. Referring to the hypotheses on the origin of percids, especially the Laurasian origin

hypothesis, P. flavescens originated from the same place as the three sympatric species of P. flu-
viatilis, G. cernua, and S. lucioperca, but had adapted to the warmer North American Great

Lakes and the farther south as a result of the vicariant speciation of North America and Europe

due to the opening of the North Atlantic [34–37]. However, P. fluviatilis is mainly distributed
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in the colder north region of Eurasia, especially in the Irtysh River basin. Therefore, natural

selection seems to have more influence on evolution in the warm acclimation of P. flavescens.
Second, what about the evolutionary differences that support the adaptation in body shape?

Despite a long term of adaptive evolution, P. flavescens and P. fluviatilis are still very similar in

biology [38]. They share a small and high body with G. cernua, while S. luciopercamaintains a

larger and elongated body. Moreover, during our investigation of the fishery resources in the

Irtysh River in China, we found that S. lucioperca preyed on P. fluviatilis and G. cernua, includ-

ing some other small fishes. It is likely that S. lucioperca had evolved into, and occupied, a

higher position of the food web inside the ecosystem of the Irtysh River than did the other two

sympatric species. In this study, we conducted comprehensive investigations through RNA-

sequencing of the four species and bioinformatic analysis to explore the above assumptions

and evolutionary mechanisms that support ecological adaptation of temperature and body

shape among these four Percid species.

Materials and methods

Ethic statement

We confirmed that all the methods and experimental protocols of this study were performed

in accordance with guidelines and regulations approved by the animal ethics committee of

The Ohio State University and the Guidelines for Experimental Animals of the Ministry of Sci-

ence and Technology (Beijing, China; No. [2006]398, 30 September 2006). We minimized the

suffering on individuals and influence on natural resources.

Collection of temperature and morphological data

With the accessible data in CoastWatch (https://coastwatch.glerl.noaa.gov/statistic/statistic.

html), we summarized the average annual water temperature of Lake Erie from 1992 to 2017

as a reference. We collected P. flavescens from the first generation of wild population from

ponds in Piketon, Ohio, USA (39˚03’02" N, 82˚59’34" W, 380 km south of Lake Erie center).

The parents of P. flavescens were introduced from the Perquimans River, North Carolina, USA

(36˚11’38" N, 76˚27’36" W) in 2010. We had also recorded the water temperature of the ponds

for the past several years. We collected the individuals of P. fluviatilis, G. cernua, and S. lucio-
perca in the Irtysh River, Xinjiang Uygur Autonomous Region, northwest of China (48˚01’29"

N, 85˚33’04" E) (Fig 1). The Irtysh River and Ob River, chief upper streams of the Ob-Irtysh

River, both arise from their source in the glaciers of the Altai mountains, south and north side

respectively, while they flow almost parallel through most of the cold flat Siberian plains and

eventually converge and inject into the Arctic Ocean. Due to the absence of temperature data

for the Irtysh River in the past decades, we randomly monitored the data from early May to

early October from 2012 to 2016. In addition, we also referred the climate temperature data

from the World Climate website (https://www.climate-charts.com/) for the two sampling

locations.

We collected the data of body length (BL), body height (BH), and body weight as proxies

for growth of the four Percids. In addition, we compared the ratios of BL/BH, directly reflect-

ing the body shape of fish [39, 40], among the four Percids. We conducted the non-parametric

multiple comparison of the ratios using the “npar” package in R 3.5.3 because the sample sizes

and variance of the ratios were not equal [41]. Furthermore, we also computed the asymptotic

length L1 and the growth performance index ; between P. fluviatilis and S. lucioperca based

on the data of age and body length since the L1 and ; could statistically reveal the growth

characteristic of fish [42, 43]. We finally collected two datasets of length and age from 386 indi-

viduals for P. fluviatilis and 176 for S. lucioperca, which matched the requirements of sample

Evolutionary differences in adaptation of temperature and body shape
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size described in a previous study [44]. We estimated the L1 through the Von Bertalanffy

growth function (VBGF) with Levenberg-Marquardt’s nonlinear fitting in Origin 2018 (Origi-

nlab, Northampton, USA) [45]. The VBGF and formula for calculating ; were as follows:

Lt ¼ L1½1 � e
� kðt� t0Þ�; ; ¼ log

10
kþ 2 log

10
L1;

where Lt is the body length at age of t; k and t0 denote growth coefficient and scaling constant,

generated by the nonlinear fitting, respectively.

Sample collection and RNA extraction

We collected tissue samples of brain, heart, skin, dorsal muscle, liver, spleen, vertebra, and fins

from three individuals of each species for RNA extraction in the summer of 2015. We snap-

froze samples of P. flavescens in liquid nitrogen to a temperature of -80˚C, while samples of P.

fluviatilis, G. cernua, and S. lucioperca stored in ice cooling TRIzol were brought to a tempera-

ture of -80˚C according to field conditions. We isolated total RNA of the samples using an

improved protocol for better next-generation sequencing [46]. We checked the purity of RNA

using the NanoPhotometer spectrophotometer (IMPLEN, CA, USA), and measured the con-

centration using Qubit RNA Assay Kit in Qubit 2.0 Fluorometer (Life Technologies, CA,

USA). We assessed the integrity using the RNA Nano 6000 Assay Kit of the Agilent Bioanaly-

zer 2100 system (Agilent Technologies, CA, USA). Finally, we prepared equal amount of 3 μg

RNA for each specimen.

Sequencing, assembly, and annotation

We purified the mRNA from total RNA using poly-T oligo-attached magnetic beads and sub-

sequently fragmented them with fragmentation buffer. We synthesized first-strand cDNAs

with random hexamer primer and generated pair-strands cDNAs, followed by purification

using AMPure XP beads. Then we sequenced the qualified cDNA libraries on an Illumina

Hiseq 2500 platform and obtained paired-end reads. We firstly processed raw data (raw reads)

of fastq format within FastQC Version 0.11.4 [47] by removing reads containing adapter, ploy-

N, and low quality reads from the raw data. We conducted transcriptome assembly using Trin-

ity with default sets [13]. Redundant unigenes were removed through CD-HIT-EST program

Fig 1. Sampling location, phylogenetic tree, and multiple comparison of ratios of body length / body height (ω)

among four Percids. ���: significant difference (p< 0.01) revealed from nonparametric multiple comparisons (npmc)

using the “npar” package in R 3.5.3.

https://doi.org/10.1371/journal.pone.0215933.g001
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with parameters “c = 0.95” and “n = 10” [48]. Then, we annotated function of unigenes using

BLASTX (E-value of 1 e-5) based on the following databases: Nr (NCBI non-redundant pro-

tein sequences), Nt (NCBI non-redundant nucleotide sequences), Pfam (Protein family),

KOG/COG (Clusters of Orthologous Groups of proteins), Swiss-Prot (A manually annotated

and reviewed protein sequence database), KEGG (KEGG Ortholog database), and GO (Gene

Ontology), after which the best aligning results were used for the direction of sequences.

Identification of orthologous genes

To identify orthologous genes, we downloaded annotated CDSs (coding sequences) and pro-

teins of one Perciformes species, Oreochromis niloticus, and one Cypriniformes species, Danio
rerio, from the Ensembl database as references. Then we filtered all the putative proteins of the

four Percidae species, together with two downloaded proteomes datasets, to build the local

database for blasting parameters so that length of proteins must be longer than 50 and percent-

age of stop codon must be less than 20. Subsequently, we conducted self-to-self BLASTP for all

amino acid sequences with a cut-off E-value of 1e-5 in the local database. We constructed

orthologous groups from the BLASTP results with OrthoMCL v2.0.3 using default settings

[49]. We retained the longest unigene if multiple unigenes were orthologous. We aligned all

the orthologous genes in groups that have one-to-one relationships among lineages by

PRANK [50] and subsequently trimmed them by Gblocks [51] with the parameter “-codon”

and “-t = c,” respectively.

Phylogenetic analysis and substitution rate estimation

We concatenated the trimmed sequences of orthologous genes into super-alignments in Fas-

Parser2 [52] for phylogenetic analysis. We constructed the Bayesian tree based on the concate-

nation of all one-to-one orthologous genes in MrBayes 3.2.6 [53] using the “GTR+I” model

selected by AIC in MrModeltest 2.4 [54], and inferred the ML tree in PAUP [55].

Basing on the consensus phylogenetic tree, we estimated the substitution rates using the

codeml program in FasParser2. To be specific, 1) we used the free ratio model (model = 1,

NSsites = 0) to estimate the evolutionary rates of every lineage at each of the 1,117 orthologous

genes and the super-alignments (ratios of the alignments were regarded as references only), fil-

tering out the genes if N × dN or S × dS < 1 or dS > 1 [56], and 2) to identify genes that might

contribute to lineage-specific adaptations, we conducted the branch model (model = 2,

NSsites = 0) and branch-site model (model = 2, NSsites = 2) to explore the following two evo-

lutionary gene sets for the four Percidae fishes: fast-evolving genes (FEGs) that have undergone

higher dN/dS ratios (the ratio of nonsynonymous to synonymous substitutions) in specific line-

ages in comparison with the rest branches, and positively selected genes (PSGs) (1< dN/dS <

999) that contain specific codon sites influenced by positive selection in each foreground

branch only. All the results were automatically filtered by FasParser2 according to default set-

tings, including likelihood ratios tests (LRTs) among alternative models, false discovery rate

(FDR) correction, and Bayes Empirical Bayes (BEB) estimation. Then, to figure out potential

functions of both FEGs and PSGs, we performed gene ontology (GO) functional enrichment

analysis in DAVID (https://david.ncifcrf.gov/tools.jsp) [57].

Result

Differences in environmental temperature

The mean annual water temperature (Tmw) of ponds at OSU Aquaculture Research Center at

Piketon was 18.4˚C from 2014 to 2016 (Table 1), compared to 11.3˚C in Lake Erie (S1 Table in
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supplemental file). The data of water temperature we randomly monitored in the Irtysh River

revealed a comparatively low mean of 11.2˚C during the warmer seasons, late spring to middle

autumn (S2 Table). However, recorded data showed that mean temperatures in January ran-

ged from -28˚C on the shores of the Kara Sea to -16˚C in the upper reaches of the Irtysh River,

and July temperatures for the same locations, respectively, ranged from 4˚C to merely 20˚C

[58]. Notably, the absolute minimum temperature in the Altai Mountains could be as

extremely low as -60˚C, and this area has short warm summers and long cold winters, i.e., the

freezing period of the Irtysh River usually lasts from late November to late March with a mean

water temperature of 0˚C to 3˚C [59]. We could conclude that the mean water temperature in

the Irtysh River should be lower than 11.2˚C.

Thus, it is obvious that the Great Lakes and farther south are much warmer than the Irtysh

River basin. Moreover, the three sympatric species are enduring a wider fluctuation of temper-

ature than P. flavescens does, 60.0˚C and 36.7˚C, respectively.

Differences in morphological traits among four species

The asymptotic length of S. lucioperca was 1,091.11 mm, which was two times longer than

498.48 mm for P. fluviatilis. The ratios of body length / body height showed that the body of S.

lucioperca was more elongated with the largest mean ratio of 4.30, ranging from 3.74 to 4.83,

followed by G. Cernua, P. fluviatilis, and P. flavescens, with the mean ratios of 3.23, 3.04, and

3.03, respectively (Table 1 and Fig 1, S3 Table). Moreover, the growth performance index of S.

lucioperca (; = 5.05) was higher than P. fluviatilis (; = 4.63) (Table 1).

Transcriptome assembly and annotation

After the quality control and trinity assembly described above, we got 129,971 to 325,637 tran-

scripts for the four Percidae fish. Subsequently, we obtained 181,246, 93,566, 102,696, and

128,467 unigenes for P. flavescens, P. fluviatilis, G. Cernua, and S. lucioperca, respectively

(Table 2). The unigenes were multiply annotated against major protein databases (e.g. NR,

GO, KEGG, and Swiss-Prot).

Table 1. Temperature and morphological information about four Percids.

range of Tc (˚C) Tmw (˚C) L1 (mm) k range of ω mean of ω ;

P. flavescens -6.5 ~ 30.2 18.4 N.A. N.A. 2.83 ~ 3.28 3.03 N.A.

P. fluviatilis -21.8 ~ 28.2 < 11.2 498.48 0.17 2.66 ~ 3.52 3.04 4.63

G. Cernua -21.8 ~ 28.2 < 11.2 N.A. N.A. 2.91 ~ 3.61 3.23 N.A.

S. lucioperca -21.8 ~ 28.2 < 11.2 1091.11 0.09 3.74 ~ 4.83 4.30 5.05

Tc = mean values of monthly low and high climate temperature, data from World Climate; Tmw = mean annual water temperature of habitats; L1 = asymptotic length;

k = growth coefficient; ω = ratio of body length / body height; ; = growth performance index; N.A. = data were not available here.

https://doi.org/10.1371/journal.pone.0215933.t001

Table 2. Basic assemble information of transcriptomes for four Percids.

Nc Nt Nu mean length median length N50 GC%

P. flavescens 20,271,970 325,637 181,246 746 472 929 44.68%

P. fluviatilis 62,944,950 129,971 93,566 699 360 1,223 48.17%

G. Cernua 30,778,283 158,925 102,696 705 345 1,296 45.73%

S. lucioperca 65,147,286 186,976 128,467 610 326 955 47.20%

Nc = number of clean reads, Nt = number of transcripts, Nu = number of unigenes, N50 = minimum contig length needed to cover 50% of assembled transcriptome

https://doi.org/10.1371/journal.pone.0215933.t002
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Identified orthologous groups and phylogenetic relationship

We identified a total of 1,117 one-to-one orthologous genes, the lengths of which ranged from

150 to 3,504 bp, and subsequently concatenated them for phylogenetic analysis. The phyloge-

netic trees constructed in different software were consensus and consistent with the topology

of previous researches [60, 61], that is, the two sister species P. flavescens and P. fluviatilis were

in the terminal clade and subsequently converged with the branch clustered by G. Cernua and

S. lucioperca (Fig 1).

Evolutionary rates in the Percidae lineages

During the evolution of species, especially within lineages, the selective pressure is presented

as the differences of dN/dS ratio at the gene level [9]. After filtering out outliers, the averages of

dN/dS ratios revealed from 1,027 orthologues displayed decreasing trends from the D. rerio
branch to the sub-branch clustered by P. flavescens and P. fluviatilis, with the highest value of

0.587 for D. rerio and lower values of 0.310 and 0.283 for P. flavescens and P. fluviatilis, respec-

tively (S4 Table, Fig 2). Meanwhile, the dN/dS ratios revealed from concatenated alignments of

Fig 2. Violin plot of dN/dS ratios for terminal branches. Pfl: P. fluviatilis, Pfa: P. flavescens, Slu: S. lucioperca, Gce: G. cernua, Oni:O. niloticus, Dre:D. rerio; log10ratios:

to better remain all the 1027 values and display the tendency, the ratios were log-transformed and plotted in R 3.5.3.

https://doi.org/10.1371/journal.pone.0215933.g002
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the 1,117 orthologues also indicated the same trends. However, we just regarded these ratios

and trends as references and did not use them for subsequent analyses, in case of unreliable

high dN/dS produced by errors in the alignments. For the five Perch-likes lineages, 36 genes of

higher evolutionary rate were identified in the P. fluviatilis lineage followed by 42, 41, 47, and

91 in P. flavescens, G. cernua, S. lucioperca, and O. niloticus, respectively (141 in D. rerio).

Fast-evolving and positively selected genes

In total, we identified 247, 210, 249, and 237 FEGs for P. flavescens, P. fluviatilis, G. cernua,

and S. lucioperca, respectively. Whilst, we identified 64, 47, 58, and 48 PSGs, respectively. Fur-

thermore, we also counted the subset of overlapping genes after comparison of the two sets

above, while such genes were considered to be directly related to adaptive evolution [7, 62].

Finally, we identified 23, 14, 25, and 6 overlapping genes in P. flavescens, P. fluviatilis, G. cer-
nua, and S. lucioperca, respectively (Table 3).

Notably, the 60 overlapping genes were significantly (p< 0.05) enriched in only two “bio-

logical process” (BP) terms (tRNA aminoacylation, and regulation of vascular endothelial

growth factor receptor signaling pathway) and three KEGG pathways (dre00630: glyoxylate

and dicarboxylate metabolism, dre01100: metabolic pathways, dre01200: carbon metabolism).

Functional annotation of shared and specific FEGs / PSGs

Among the three cold-sympatric species, there were 22 shared FEGs that were significantly

enriched in only one BP term (translational initiation). In addition to the two genes enriched,

we manually annotated the rest of the 20 genes against the UniProt database. Meaningful

terms like “ion binding,” “protein transport,” and “ubiquitin-dependent protein catabolic pro-

cess” were assigned and reported to be closely related to cold stress [63].

In the P. flavescens lineage, there were 93 specific FEGs and 57 specific PSGs. These 93 spe-

cific FEGs were significantly assigned to four BP terms, three “cell component” (CC) terms,

three “molecular function” (MF) terms, and one KEGG pathway. The 57 specific PSGs were

significantly assigned to five BP terms, four CC terms, one MF term, and one KEGG pathway

(Table 4). Among these GO terms and pathways enriched form the two gene sets, notably, the

“endoplasmic reticulum membrane” (GO: 0005789) and “cytoplasm” (GO: 0005737) were sig-

nificant in both sets.

In the S. lucioperca lineage, the 78 specific FEGs were significantly assigned to five BP

terms, one CC term, two MF terms, and five KEGG pathways. The 41 specific PSGs were sig-

nificantly enriched in one BP term and two CC terms (Table 5). Among the terms above, the

“proteolysis” and “proteolysis involved in cellular protein catabolic process” play beneficial

roles in skeletal muscle growth and stress adaptation during the long-term viability and main-

tenance of any organ system [64]. The “phospholipid biosynthetic process” was positively

stimulated by growth factors like TGF-β1, IGF-1, and BMP-2, as seen in a previous study on

the fibroblast-like synoviocytes [65].

Table 3. Average dN/dS values, the number of FEGs, PSGs and overlapping genes between FEGs and PSGs for the four Percids.

Species dN/dS FEGs PSGs Overlapping

P. flavescens 0.310 247 64 23

P. fluviatilis 0.283 210 47 14

G. cernua 0.306 249 58 25

S. lucioperca 0.367 237 48 6

dN/dS: average ratios of nonsynonymous to synonymous substitutions; FEGs: fast-evolving genes; PSGs: positively selected genes

https://doi.org/10.1371/journal.pone.0215933.t003
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Discussion

Given that yellow perch populations are widely distributed in the North American continent,

and isolated by both geographic and genetic distances to some extent [66], we could imply that

the southeast populations had already adapted to the warmer regions. The yellow and Euro-

pean perch diverged at 19.8 million years ago during the early Miocene Epoch, while the diver-

gence time among Perca, pike perch, and ruffe should also be tens of million years ago [60].

Thus, environmental stress should have accumulated enough selection during the adaptive

evolution among these species. In the respect to evolution, high ratios of dN/dS generally sug-

gest the frequent occurrence of adaptive evolution with a high rate of functional protein diver-

gence arising from direction selection, which also indicates the role and strength of natural

selection in phenotypic evolution and divergence among species [67]. With comparisons

among genomes, one can study the evolution of genes and other genomic sequences and how

molecular evolution relates to adaptation and phenotypic evolution at the organismic level,

concerning fast-evolving and positively selected genes that attribute to natural selection on

beneficial alleles in driving DNA sequence evolution.

In this study, we used assembled transcriptomes from RNA-seq to explore fast-evolving

genes and positively selected genes involved in evolutionary mechanisms that potentially

Table 4. Significantly enriched terms among FEGs and PSGs for P. flavescens.

category term GO number genes involved p value

FEGs biological

process

transcription initiation from RNA polymerase II

promoter

GO:0006367 crsp7, gtf2a2, ercc3 0.002

protein processing GO:0016485 ncstn, pcsk2, aph1b 0.014

oxidation-reduction process GO:0055114 hao,1 sdha, uevld, cyp1a, hif1an creg,2 dhtkd1, cox15 0.016

translation GO:0006412 eif3i, iars,mrpl13,mrpl15,mrpl47 0.046

cellular

component

holo TFIIH complex GO:0005675 gtf2h4, ercc3 0.021

endoplasmic reticulum membrane GO:0005789 cyp1a, ttc9b, sdf2l1, fkbp3, pigb 0.026

cytoplasm GO:0005737 nit2, stk10, hal, vbp1, ufc1, pin4, naa38, plaa, iars, eif4a3, psmg1
hif1an, cnep1r1, tmem216, grcc10, eif3i, phlda3

0.026

molecular

function

peptidyl-prolyl cis-trans isomerase activity GO:0003755 ttcpb, ppil1, fkbp3, pin4 0.0006

oxidoreductase activity GO:0016491 hao1, sdha, uevld, cyp1a, hif1an, creg2, dhtkd1, hpgd, bdh1 0.001

RNA polymerase II carboxy-terminal domain

kinase activity

GO:0008353 gtf2h4, ercc3 0.019

KEGG pathway Basal transcription factors dre03022 gtf2a2, gtf2h4, ercc3 0.019

PSGs biological

process

SCF-dependent proteasomal ubiquitin-

dependent protein catabolic process

GO:0031146 rnf7, fbxw5, fbxl5 0.0004

protein ubiquitination GO:0016567 fbxw5, vhl, fbxl5, fbxo045, rnf170 0.001

phenylalanyl-tRNA aminoacylation GO:0006432 farsb, lrrc47 0.011

odontogenesis GO:0042476 cyp26b1, ext2 0.029

regulation of vascular endothelial growth factor

receptor signaling pathway

GO:0030947 hif1an, vhl 0.029

cellular

component

endoplasmic reticulum membrane GO:0005789 ttc9b, cyp26b1, pigb, alg5, rnf170 0.004

phenylalanine-tRNA ligase complex GO:0009328 farsb, lrrc47 0.007

cytoplasm GO:0005737 taldo1, fbxw5, hif1an, psme2, parsb, fbxl5, ufc1, grcc10, pbdc1, pin4,

tradd, tnp03
0.016

Cul4-RING E3 ubiquitin ligase complex GO:0080008 rnf7, fbxw5 0.021

molecular

function

phenylalanine-tRNA ligase activity GO:0004826 farsb, lrrc47 0.010

KEGG pathway Metabolic pathways dre01100 prim1, fahd1, ndufb5, taldo1, cyp26b1, pigb, alg5,mgll, ext2,

adpgk2
0.007

https://doi.org/10.1371/journal.pone.0215933.t004
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support ecological adaptation of temperature and body shape among these four Percid species.

Recent studies have provided references and evidence for the role and mechanisms of such

kind of genes in adaptation. For examples, similar researches were performed on cactophilic

Drosophila, and the Tibetan fish Gymnodiptychus pachycheilus to identify potential candidate

genes for environmental adaptation [68, 69]. Similarly, comparative transcriptome analysis in

alvinellid polychaetes revealed that the trait of thermophilic species that still inhabit higher

temperature environments was maintained by purifying selection in lineages, while the trait of

lineages currently living in colder habitats was likely obtained under selective relaxation, with

some degree of positive selection for low-temperature adaptation at the protein level [70].

Evolutionary differences between cold and warm adaptation

After screening the 1,027 one-to-one orthologous genes in the software FasParser2, there were

22 FEGs with high dN/dS ratios shared among the three cold-tolerant sympatric species, P. flu-
viatilis, G. cernua, and S. lucioperca. These 22 FEGs were significantly enriched in “transla-

tional initiation” with two eukaryotic initiation factors (eIFs), eif1ad and eif3s6ip. For decades,

it has been reported that translation-initiated proteins synthesis always target some vital func-

tions during cold adaptation, including: 1) eliminating unnecessary secondary structures of

nucleic acids at low temperature [71, 72]; 2) balancing the membrane fluidity to resist cold

stress [73], as membrane stiffness caused by cold can lead to the deterioration of membrane-

related cell functions [74, 75]; and 3) inducing the synthesis of specific cold-protective proteins

and glycoproteins, especially key cold shock proteins (CSPs) [76–79]. Additionally, the cse1l
(alias of CAS, one of the 22 FEGs), a specific nuclear transport factor that transports importin

and exportin alpha between the nucleus and cytoplasm [80], downregulated the cftr activity to

keep fluid homeostasis [81]. Obviously, fluid secretion and homeostasis are primary strategies

for fish in withstanding environmental stress, especially the epidermal mucus as the first bar-

rier [82].

Table 5. Significantly enriched terms among FEGs and PSGs for S. lucioperca.

category term GO number genes involved p value

FEGs biological

process

proteolysis GO:0006508 lap3, usp3, psmb3, proza, zmpste24, ctsh, psma8, pmpca 0.003

glycine catabolic process GO:0006546 amt, gldc 0.007

ribosome biogenesis GO:0042254 dcaf13, sdad1, nip7 0.016

proteolysis involved in cellular protein

catabolic process

GO:0051603 psmb3, ctsh, psmab 0.019

protein methylation GO:0006479 armt1, hemk1 0.048

cellular

component

nucleus GO:0005634 cmpk, egr1, prpf31, sdad1, dusp22a 0.039

molecular

function

hydrolase activity GO:0016787 enpp6, dusp22a, ddx56, hdac3, usp3, psmb3, smpd1, ovca2, ctsh,

psma8
0.006

peptidase activity GO:0008233 usp3, psmb3, zmpste24, ctsh, psma8 0.030

KEGG pathway Biosynthesis of antibiotics dre01130 dbt, aldh7a1, amt, zmpste24, psat1,mdh2, gldc 0.0008

Glycine, serine and threonine metabolism dre00260 aldh7a1, amt, psat1, gldc 0.001

Glyoxylate and dicarboxylate metabolism dre00630 amt,mdh2, gldc 0.011

Metabolic pathways dre01100 cmpk, lap3, dbt, aldh7a1, amt, smpd1, atp6ap1a, zgc:92907, coq7,

psat1, ndufs2,mdh2, gldc
0.012

Carbon metabolism dre01200 amt, past1,mdh2, gldc 0.023

PSGs biological

process

phospholipid biosynthetic process GO:0008654 chpt1, tamm41 0.038

cellular

component

mitochondrion GO:0005739 ndufb8, hoga1, echdc3,mrrf, tamm41 0.018

mitochondrial respiratory chain complex I GO:0005747 ndufb8, ndufa11 0.041

https://doi.org/10.1371/journal.pone.0215933.t005
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Other three fast-evolving genes (psmd12, fbxo45, and anapc2) were found to be shared by

the three cold-related Percid species examined here. These genes are implicated in the process

of protein ubiquitination, a process that seems to be relevant for cold-temperature tolerance.

The role of protein ubiquitination level was demonstrated in three Antarctic fish, showing a

higher level of protein ubiquitination than fish living in warmer environments at lower latitude

[83]. A large number of studies showed that the protein ubiquitination process directly medi-

ated response to cold. This is because the ubiquitin 26S proteasome system could directly regu-

late cold signaling and induce the ICE (inducer of CBF expression), which controlled the

expression of cold-responsive transcription factor CBF3/DREB1A that regulated the transcrip-

tion of numerous cold-responsive genes [84–87].

In contrast, the warm-tolerant perch P. flavescens showed, also, significant genes that

seemed to have a vital role in the process of adapting to warmer temperatures. Among the 93

FEGs in yellow perch, the most significantly enriched molecular function term was “peptidyl-

prolyl cis-trans isomerase activity” (p< 0.001). As reported, these isomerases increased in

intermediate in the process of protein folding [88]. Notably, among the four genes (ttc9b,

ppil1, fkbp3, pin4) related to “peptidyl-prolyl cis-trans isomerase activity,” ttc9b and pin4 were

both fast-evolving and positively selected. As one of the FK506-binding proteins, we supposed

that fkbp3 (fkbp25) functioned in a similar role as other members like fkbp38, fkbp51, fkbp52,

and fkbp54. They associated with heat shock proteins (especially HSP70, HSP90), and had pep-

tidyl-prolyl cis-trans isomerase activity [89–92]. Then the most significantly and positively

selected biological process was the “SCF-dependent proteasomal ubiquitin-dependent protein

catabolic process” (p< 0.001). The SCF (Skp, Cullin, F-box containing proteins) and SCF-like

complexes regulate large numbers of protein processes involved in cell cycle progression,

DNA damage response, and signal transduction and transcription [93–95]. Interestingly, most

of the F-box proteins showed the tendency of high temperature induction [96], and the two F-

box genes, fbxl5 and fbxw5, were both fast-evolving and positively selected in P. flavescens.
Likewise, the “Cul4-RING E3 ubiquitin ligase complex” was also significantly enriched and

positively selected. A study on Arabidopsis revealed that Cullin4-RING ubiquitin ligase partici-

pates in heat stress response through its association with HSP90-1 [97]. Meanwhile, the RING-

type E3 in rice promoted tolerance of heat stress via mediating re-localization of nuclear pro-

teins [98, 99].

Besides the first two most significantly enriched terms, two CC terms, “endoplasmic reticu-

lum membrane” and “cytoplasm,” which were significantly enriched in both FEGs and PSGs

in P. flavescens, should also be paid attention. This might imply that these two fast-evolving

and positively selected functional terms might be specific and important within the P. flaves-
cens lineage for adapting to the warmer environment of the Great Lakes and farther south, as

the “protein processing in endoplasmic reticulum” was proved to be a heat-specific pathway in

D. rerio [63]. Under heat stress, the primary reaction of most organisms is the intervention of

HSPs [100–102]. Most HSP granules are usually synthesized or located in the cytoplasm with

the help of endoplasmic reticulum and subsequently translocated into the nucleus or involved

in signal transduction from cytoplasm to the nucleus under stress conditions [103–105]. Simi-

larly, the “oxidoreductase activity” and “oxidation-reduction process” should also be directly

counted into the adaptation under thermal stress [106, 107].

In addition to the functional terms and genes mentioned above, the following naturally

selected genes in P. flavescensmight also reveal more profound adaptive information, most of

which were directly assigned to energy or lipid metabolism. For instance, the fast-evolving

gene cnep1r1 and positively selected genemgll concern lipid metabolic process. Most fish,

when exposed to environmental stimuli, typically require more energy consumption, and lip-

ids are one kind of main energy stores for fish [108]. The long-term temperature acclimation
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research on zebrafish showed that lipid and liver protein consumptions were increased when

exposed to high temperature [109], which could provide extra evidence that lipids play key

roles in heat response management [110]. What is more, phosphorylation, the basic activator

of heat-induced genes [110–112], was revealed by three warm-related FEGs (phlda3, gtf2h4,

stk10) rather than those cold-related FEGs mentioned above.

Altogether, we could hypothesize the evolutionary differences between one cultured and

three wild Percidae species for adapting to divergent temperature environments, which, of

course, are on the basis of fundamental processes like energy metabolism, signal transduction,

and membrane and cell proliferation/apoptosis [113, 114].

Cold-adaptation. Since P. fluviatilis, G. cernua, and S. lucioperca originated from and are

mainly distributed in the northwest of Eurasia, responses to the cold should be the most basic

physiological mechanism. Cold might stimulate and accelerate their translation-initiated pro-

teins synthesis, so that they could store enough cold-protective proteins and glycoproteins,

especially CSPs. Genes like eIFs, cse1l, psmd12, fbxo45, and anapc2 present fast evolutionary

rates or are naturally selected during the long term of cold adaptation, and they subsequently

undertake their respective molecular functions or biological processes for responding to envi-

ronmental stress. Some of these genes could balance membrane fluidity and secrete epidermal

mucus to resist the cold stress. The induced protein ubiquitination process could, in return,

regulate the cold signaling and mediate the transcription of numerous cold-responsive genes.

Warm-adaptation. The key point should be the interaction of HSPs and the chaperones.

At this point, ttc9b, ppil1, rnf7, fbxw5, fkbp3, and pin4 are significantly involved and naturally

selected in P. flavescens, especially positive selection on synthesis of HSPs through the endo-

plasmic reticulum membrane in cytoplasm. Meanwhile, some auxiliary biological processes

are conducted by their respective genes. First of all, F-box genes, fbxl5 and fbxw5, could posi-

tively respond to heat stress. Then, cnep1r1 andmgll could fuel the lipid metabolic process to

compensate the acute energy consumption under heat stress, as well as play key roles in heat

response management for P. flavescens. Not surprisingly, phlda3, gtf2h4, and stk10might also

urge the phosphorylation to activate heat-induced genes. Gradually, rnf7 and fbxw5 are posi-

tively selected by nature so that they could better exercise the power of “Cul4-RING E3 ubiqui-

tin ligase complex,” promoting the tolerance of heat stress for P. flavescens. Eventually, these

evolutionary issues in P. flavescens should contribute to its adaptation to the warmer Great

Lakes and farther south during long-term evolution.

Evolutionary differences in body shape

The shared FEGs and PSGs among three small perches (P. flavescens, P. fluviatilis, and G. cer-
nua) were mainly involved in some vital, but basic, terms and showed little information

directly related to growth. Since P. flavescens and P. fluviatilis are still very similar in biology,

and body shape to G. cernua, we might hypothesize that genes related to this trait would be

under purifying selection. However, the FEGs and PSGs in the large and elongated S. lucio-
perca implied meaningful clues for evolutionary adaptation in body shape. There were as

many as 22 FEGs and 7 PSGs related to energy metabolism such as “hydrolase activity,” “mito-

chondrion,” “glyoxylate and dicarboxylate metabolism,” “metabolic pathways,” and “carbon

metabolism.” Deeping into the 14 GO terms and KEGG pathways that significantly enriched

from the FEGs and PSGs in S. lucioperca, we paid more attention to the genes that might con-

tribute to ecological adaptation in body shape.

To begin with, the aldh7a1, with the oxidoreductase activity of aldehyde dehydrogenase

(aldh) family members that are essential for eye development, plays a critical role in eye and

limb development in fish, specifically in the development of camera-type eyes, cartilage, bone,
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and pectoral fin [115–117]. Together, the egr1 [118–121] and prpf31 [122, 123] are also neces-

sary for retina development in the camera-type eye. Whilst egr1 is also a transcriptional regula-

tor of numerous target genes, it thereby plays a crucial role in regulating the response to

growth factors [124]. Similarly, the hdac3, a member of histone deacetylases (HDACs) that is

involved in multiple developmental processes [125, 126], plays a key role in the regulation of

posterior lateral line formation and provides evidence for epigenetic regulation in auditory

organ development [127].

The sdad1 was assigned to a significant biological process called “actin cytoskeleton organi-

zation.” As it is known, actin participates in many important cellular processes including mus-

cle contraction, cell division and cytokinesis, cell signaling, and the establishment and

maintenance of cell junctions and cell shape [128–130]. In vertebrates, muscle tropomyosin,

isoforms of actin found in muscle tissues, is a major constituent of muscle contractile appara-

tus [131, 132]. Likewise, the alpha-actin was proved to be essential for the development of car-

diac and skeletal muscles [133–135]. Notably, skeletal muscles are the force-generators of the

body [136–138], the strength of which largely determines the swimming speed of fish [139–

141]. However, the apparent role of ubiquitin/proteasome pathway in skeletal muscle growth

should not be ignored, as proper synthesis and degradation of the appropriate myogenic pro-

teins is indispensable during myogenic process [138, 142, 143]. In this study, the two fast-

evolving genes psmb3 and psma8 (proteasome subunit beta/alpha type) were assigned to “pro-

teasome-mediated ubiquitin-dependent protein catabolic process.”

Last but not least, the two fast-evolving genes amt and gldc were involved in “glycine cata-

bolic process.” In the 1980s, uptake of glycine by fish scales indicated protein synthetic com-

pensation under cold exposure, and was regarded as an index of fish growth [144, 145]. In

particular, glycine uptake by scales of colder acclimated fish showed a higher rate for a given

growth rate [146]. More importantly, glycine, one kind of high energy storage in fish [147],

participates in gluconeogenesis, carbon metabolism, fat digestion [148], stimulating feed

intake [149], regulation of osmoregulatory responses [150], and may also regulate gene expres-

sion in rainbow trout [151]. More powerful evidence of glycine relating to growth was found

in the study on the effect of glycine supplementation on growth performance, body composi-

tion, and salinity stress of juvenile Pacific white shrimp, which highlighted that supplementa-

tion of glycine can increase weight gain, affect the amino acid content of muscle, and increase

the anti-oxidative capacity of white shrimp [152].

Based on findings from this study, we could propose the following potential evolutionary

advantages driven by genes that are influenced by natural selection, for the elongated body

shape of S. lucioperca. In addition to some basic metabolic mechanisms established by a large

amount of genes, genes like aldh7a1, egr1, and prpf31 ensure the development of the camera-

type eye, which, together with posterior lateral line, could help S. lucioperca better sense the

surrounding environment and lock onto prey [153, 154]. Thus, it could predict danger and

ensure high predation efficiency. With the help of amt and gldc, its appetite increases and

energy intake is sufficient, guarantying a high growth rate. In the meantime, the absorption of

glycine by scales could help to establish an effective surface barrier. Then the hdac3, together

with aldh7a1, could shape the body to be elongated and develop an effective pectoral fin,

which is more conducive to shuttle in the rushing, complex water [155–158]. Meanwhile,

sdad1, psmb3, and psma8 work closely together to build muscle strength so that S. lucioperca
can swim faster and effectively catch prey. More or less, these natural selected molecular

responses and related physiological traits should contribute to its evolution to its high position

on the food web and adapting to this important ecological niche.
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Conclusions

The four Percidae fish involved in this study showed differences in adaptation to temperature

environment and body shape, to some extent. Although the findings of this study are not able

to confirm any "signature of selection", there are indications that selective processes in the

transcriptome could be enacted to allow these Percidae fish to locally adapt to different ranges

of temperature, and explain the evolutionary difference in body shape, to some extent. We

identified the fast-evolving and positively selected genes among these four Percidae fish with

O. niloticus and D. rerio as references, so as to predict molecular insights into ecological niche

partitioning and divergent adaptation involved in the evolutionary race [159, 160]. However,

referring to Stepien et al.’s comprehensive study on evolutionary and adaptive issues of perch

[66], we realized that our study lacked sufficient geographic populations and phylogenetic spe-

cies to emphasize more powerful and inherent mechanisms responsible for evolution. More-

over, quantitative trait locus (QTL) were also necessary for expounding the power of natural

selection and genetic mutation/drift [161]. Nevertheless, the naturally selected genes and

mechanisms presented in this study attract our further interest in studying the influence of

temperature on the adaptation and growth of fish.
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